Interpretable Machine Learning in Kidney Offering: Multiple Outcome Prediction for Accepted Offers

Jul 29, 2024·
Achille Salaün
Achille Salaün
,
Simon Knight
,
Laura Wingfield
,
Tingting Zhu
· 0 min read
Abstract
The decision to accept a deceased donor organ ofer for transplant, or wait for something potentially better in the future, can be challenging. Clinical decision support tools predicting transplant outcomes are lacking. This project uses interpretable methods to predict both graft failure and patient death using data from previously accepted kidney transplant ofers. Using more than 25 years of transplant outcome data, we train and compare several survival analysis models in single risk settings. In addition, we use post hoc interpretability techniques to clinically validate these models. Neural networks show comparable performance to the Cox proportional hazard model, with concordance of 0.63 and 0.79 for prediction of graft failure and patient death, respectively. Donor and recipient ages, the number of mismatches at DR locus, dialysis type, and primary renal disease appear to be important features for transplant outcome prediction. Owing to their good predictive performance and the clinical relevance of their post hoc interpretation, neural networks represent a promising core component in the construction of future decision support systems for transplant ofering.
Type
Publication
In Scientific Reports, volume 14, article number: 17356 (2024)