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Predicting graft and patient 
outcomes following kidney 
transplantation using interpretable 
machine learning models
Achille Salaün 1*, Simon Knight 2, Laura Wingfield 2 & Tingting Zhu 1

The decision to accept a deceased donor organ offer for transplant, or wait for something potentially 
better in the future, can be challenging. Clinical decision support tools predicting transplant outcomes 
are lacking. This project uses interpretable methods to predict both graft failure and patient death 
using data from previously accepted kidney transplant offers. Using more than 25 years of transplant 
outcome data, we train and compare several survival analysis models in single risk settings. In 
addition, we use post hoc interpretability techniques to clinically validate these models. Neural 
networks show comparable performance to the Cox proportional hazard model, with concordance 
of 0.63 and 0.79 for prediction of graft failure and patient death, respectively. Donor and recipient 
ages, the number of mismatches at DR locus, dialysis type, and primary renal disease appear to be 
important features for transplant outcome prediction. Owing to their good predictive performance 
and the clinical relevance of their post hoc interpretation, neural networks represent a promising core 
component in the construction of future decision support systems for transplant offering.

Around 2500 deceased donor kidney transplants are performed in the UK each year. At any time, there are 
around 5000 patients on the kidney transplant waiting list with an average wait of 2–3 years. The shortage of 
organs available for transplant means that some patients become unfit for surgery or die whilst waiting. Because 
of this, clinicians often consider organ offers from less-than-optimal donors with existing comorbidities or older 
age. Decisions around organ offers are made by clinicians based upon the information available at the time of 
offer, including donor and recipient demographic and medical details. Clinicians use their clinical experience, but 
do not have reliable tools available to help them predict what would happen if they choose to accept or decline 
an offer and wait for the next available one. This uncertainty leads to considerable variability in organ decline 
rates and waiting times between clinicians and centres. A clinical decision support (CDS) system that accurately 
predicts transplant outcomes, both in terms of graft failure and patient death, as well as indicating what would 
happen if the organ offer was declined (in terms of future offers and likely waiting time), may help to support 
clinicians in making these difficult decisions. As decisions must remain under the responsibility and control of 
the clinician, any CDS tool must be easy to use, and predictions must be interpretable from a clinician’s perspec-
tive. Interpretability and usability are also important to patients, allowing better explanations of likely outcomes 
during the informed consent process.

The aim of this study is to predict transplant outcomes in the scenario of an accepted kidney offer. We utilise 
more than 20 years of registry data, containing over 36,000 accepted kidney transplant offers, with graft and 
patient survival information. These data have been provided from the National Health Service Blood and Trans-
plant (NHSBT) UK Transplant Registry with ethical approval. Using these data, we have trained and compared 
several survival analysis models. In addition, we use post hoc interpretability techniques to clinically validate 
these models.

Predicting the time of occurrence of an event (such as patient death or graft failure) from censored data has 
been extensively studied under the name of survival analysis. This has many applications in health informat-
ics such as predicting  strokes1, oral  cancer2, or graft outcome prediction. Censored data are common in such 
contexts, resulting from loss of follow-up, competing events, or the end of the study. In the context of graft 
outcome prediction, previous studies use the Cox proportional hazard (PH) model to predict kidney graft or 
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recipient  survival3–5. The Cox PH model is a classic time-to-event approach that models the hazard function, as 
in the failure rate of a system according to  time6. This approach is not only robust and reliable, but also simple to 
use and well understood by clinicians. Several generalisations of this model have been proposed. For instance, 
 DeepSurv7 aims at increasing the modelling power of the Cox model by replacing the linear contribution of the 
covariates with a neural network.  DeepHit8 directly models the cumulative incidence function with a single 
neural network. Originally proposed for handling competing risks, this network is structured according to a 
multi-task architecture, composed of a shared sub-network and several cause-specific sub-networks. The loss 
has been adapted to maximise the concordance index, a classic survival analysis metric based on the idea that 
the earlier an event is observed, the higher the associated risk should be.

In contrast to the Cox PH model, this approach does not rely on the proportional hazard assumption. Neural 
networks are not the only machine learning models that have been adapted to survival analysis. For instance, 
random survival  forests9 is an adaptation of random forests to right-censored survival data. Alternatively, clas-
sification machine learning methods can be considered to predict the status of the subject of interest at specific 
time points. For example, predicting transplant outcomes after 1, 5, and 10 years is generally sufficient for the 
clinicians. Thus, existing risk communication tools such  as10 identify survival functions obtained from the Cox 
PH model at these time points. Many previous publications follow this classification  approach3,11,12. However, 
this approach requires to train a model for each time point. These independent models may induce inconsistent 
results when considered all together. Whilst many of these previous studies demonstrate acceptable predictive 
performance, none challenged their models’ validity through the lens of clinical interpretability.

Interpretability is another important criterion in the construction of a CDS tool for predicting graft outcomes. 
Interpretability is the extent to which the prediction of a model can be understood by a  human13. This way, users 
can build trust regarding the model’s results and remain in control of the associated outcomes. A good model 
should always be intrinsically interpretable to a certain degree. Indeed, interpretable models have been shown 
to be more robust to adversarial  attacks14. Although some of the approaches mentioned above, like the Cox PH 
model, are inherently interpretable, some other models, like neural networks, are designed in a way that makes 
interpretation difficult. Nonetheless, it is possible to interpret a posteriori a black box neural network model 
with the help of post hoc interpretability methods. One can provide a local explanation of a given prediction. 
For instance,  LIME15 locally samples data points around the input and returns a linear explanation of the predic-
tions made by the black-box model from these data points. Unfortunately, this solution is unstable; explanations 
depend highly on the sampled data points, harming the trustworthiness of the explanations. Similarly to LIME, 
 SHAP16 is a post hoc interpretability method relying on additive feature attribution models, i.e. linear functions 
as local explanation models. It provides explanations via game theory: each prediction is seen as a game where 
the features are players contributing to that game. Feature contributions are computed by considering all possible 
coalitions of features and the marginal contribution of each feature within these coalitions. Hence, SHAP can be 
considered as a gold standard in terms of post hoc interpretability methods.

Methods
All methods were carried out in accordance with relevant guidelines and regulations. This study, referenced 
under IRAS project ID 304542, has received approval from the Health Research Authority and Health and Care 
Research Wales (UK research ethics committee). All UK transplant recipients provide consent to the use of their 
data in the mandatory national registry at the time of addition to the transplant waiting list. This project uses 
anonymised data from the national registry, so individual patient consent was not required.

Data
Our work is based on the analysis of a data set from the UK Transplant Registry, provided by NHSBT. It describes 
36,653 accepted kidney transplants, performed between the years 2000 and 2020, across 24 UK transplant cen-
tres. All transplants are from deceased donors. The total follow-up duration is around 22 years. Each transplant 
is originally described with 3 identifiers, 12 immunosuppression follow-up indicators, 143 donor, recipient and 
transplant characteristics, and 7 entries describing targeted outcomes. Considering transplants as independent, 
we exclude the transplant, donor, and recipient identifiers. Information regarding post-transplant immunosup-
pression is discarded as this is not available at the time of the offer decision. The donor, recipient and transplant 
characteristics serve as input features for modelling. Among them, 24 describe the recipient, 109 represent the 
donor, and 10 refer to the overall transplant. Both recipient and donor characteristics contain generic infor-
mation such as gender, ethnicity, age, blood group, height, weight, or body mass index (BMI). More specific 
information is also available, such as the transplant centre, number of previous transplants, waiting time, ease 
of matching, and the dialysis status. Donor data include the cause of death, past medical history and results of 
blood tests including kidney function (estimated glomerular filtration rate, eGFR). Transplant data include the 
donor-recipient immunological match.

Duplicate rows are removed, and values outside of a plausible clinical range are removed. Categorical values 
are checked by clinicians and simplified (or removed) if needed. BMI is recomputed based on weight and height. 
Both weights and heights are discarded to limit redundant information. Blood measurements are harmonised 
across the data set by selecting the first measurement available (generally at donor registration) and the maximum 
value during the donation process. Since the calculation of eGFR varies across hospitals, this metric is recom-
puted over the whole data set using a consistent definition (see appendix, section A.1). Recipient dialysis status 
is also simplified into a dialysis duration and dialysis modality at time of transplant (predialysis, haemodialysis 
or peritoneal dialysis). Notably, the time on dialysis for predialysis recipients is set by default to 0. Transplant 
offers not meeting the inclusion criteria, such as dual and multi-organ transplants, are discarded.
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Outcomes present in the dataset include information about graft failure, patient death, and transplant fail-
ure. Graft failure excludes death with a functioning graft, whilst transplant failure denotes either graft failure 
or death. In this work, we focus on predicting graft failure and patient death. Each outcome is represented as a 
pair containing an event time and a right-censoring indicator. Right-censoring is a common type of censoring 
in survival analysis that describes the loss of follow-up on the event of interest. It can occur for various reasons, 
such as the end of the study, competing events, etc. Thus, right-censored information provides some partial 
information about the survival time, where it is only known to be greater than the censoring time. Transplant 
outcomes are recomputed for the sake of consistency.

After removing the features presenting more than 50% missing values across the whole data set, the data is 
described through 50 input variables. At this stage, the data contains 8% missingness. A summary of this data-
cleaning process is given in Fig. 1. Additionally, an exhaustive list of the features and targets considered at the 
latest stage of this process is given in the appendix (section A.2).

Model training and validation
In this article, we compare the Cox PH model, DeepHit, and random survival forests in a single risk setting. The 
different models are interpreted a posteriori, and their performances are discussed.

The following methodology is applied. First, the data is split in a stratified manner with regards to censor-
ing indicators, where 80% of the data is reserved for training and the remaining 20% is left for testing. Due to 
matching policy changes and follow-up time differences between old and recent offers, we do not split the data 
according to transplant dates. After this first step, numerical values are standardised and categorical ones are 
one-hot-encoded. Mean and variance are computed over training data only. Standardisation has appeared to be 
more relevant than normalisation due to the presence of outliers in the data. Then, we impute missing features 
with the help of MissForest, an iterative imputation technique relying on random  forests17. MissForest is first 
trained on the training data and then applied to all the data. This solution has been selected among several impu-
tation techniques including MIDAS, a variational autoencoder-based imputation  technique18; MICE, an iterative 
method for multi-column  imputation19; MissForest itself, which is a variant of MICE; and a naive imputer simply 
returning average values. These methods have been compared on a sample of the data, where missingness was 
introduced by randomly masking known values. In order to simplify the end-to-end data processing pipeline and 
alleviate any burden on data requirements, we use the same training data set for both pre-processing and model 
training. Prior tests have shown no particular difference with more partitioned data management. Thus, after the 
imputation step, survival analysis models are trained through 5-cross validation. This process is performed a first 
time for feature selection. This is achieved by inputting Gaussian noise as a feature: we select any feature whose 
importance is higher than the importance attached to noise. Based on this subset of features, 5-cross validation 
is then repeated for final model training. Model calibration is then performed: predictions are adjusted a poste-
riori to match observed outcome ratios by training a logistic regression model. Model evaluation is undertaken 
by computing concordance and AUROC scores over 100 bootstraps of the testing data. The survival models are 
clinically interpreted using SHAP. To do so, we fix a particular time point (1, 5, or 10 years) and consider how 

Figure 1.  End-to-end data processing pipeline, from raw data to model testing. Data cleaning is detailed on the 
left. Cross-validation is performed before and after feature selection.
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models predict event occurence up to that point. The coefficients of the Cox PH model are also provided. The 
choice of considering Cox model’s coefficients for interpretability rather than using SHAP is motivated by the 
fact that Cox model’s inherent interpretability is a key factor in model selection. Notably, this is how this model 
is usually interpreted. The Fig. 1 illustrates the overall methodology and the code used for experiments can be 
found at https:// github. com/ Achil leSal aun/ Xamel ot.

Following this processing pipeline, we compare the Cox PH model, random survival forests, and neural 
networks. Since both DeepHit and survival forests require the time to be discretised, we restrict transplant out-
come prediction to 1, 5, and 10 years. This step follows the discretisation process described  in8. We rely on grid 
search to tune hyperparameters. As a result, Breslow’s estimator is used to derive the Cox PH model’s  baseline20. 
In addition, a regularisation parameter is introduced and set to 1e−4 to deal with colinearities in the data. The 
survival random forest is given 300 trees. Finally, we train DeepHit in a single risk fashion. While predicting graft 
failure, the model is instantiated with two hidden layers of 100 neurons, with 10% dropout. The neural network 
used to predict patient death shows one hidden layer of 200 neurons followed by two layers of 100 neurons. For 
both graft failure and patient death predictions, the training is done through 50 epochs, with batches of size 64, 
and a learning rate equal to 1e−2.

Results

Single outcome prediction
In total, 35 features are selected to predict graft failure and patient death. Donor and recipient ages, the number 
of mismatches at DR locus, type of dialysis, and primary renal disease are important features for prediction of 
both outcomes.

Table 1 displays the concordance scores reached by each model for graft failure and patient death prediction. 
Tables 2 and 3 provide the AUROC reached by each model for graft failure and patient death prediction, respec-
tively, for observations years 1, 5, and 10. Performances before and after feature selection are presented. One can 
observe that overall performances increase with the observation time, being maximal at year 10. This may be 
explained by the fact that the features present in the original dataset are more relevant to long term predictions 
than short term ones. Also, event rates increase over time. Considering both concordance and AUROC, the 

Table 1.  Concordance scores for graft failure and patient death prediction on test data. Best results are 
highlighted in bold.

Random forest Cox PH model Neural network

Graft failure
Before feature selection 0.629 ( ±1e

−4) 0.616 ( ±1e
−4) 0.635 ( ±1e

−4)

After feature selection 0.629 ( ±1e
−4) 0.618 ( ±1e

−4) 0.627 ( ±1e
−4)

Patient death
Before feature selection 0.780 ( ±1e

−4) 0.793 ( ±1e
−4) 0.793 ( ±1e

−4)

After feature selection 0.783 ( ±1e
−4) 0.793 ( ±1e

−4) 0.789 ( ±1e
−4)

Table 2.  AUROC with respect to graft failure prediction on test data. Best scores are highlighted in bold.

Random forest Cox PH model Neural network

Year 1
Before feature selection 0.627 ( ±2e

−4) 0.611 ( ±2e
−4) 0.630 ( ±1e

−4)

After feature selection 0.622 ( ±2e
−4) 0.612 ( ±2e

−4) 0.622 ( ±2e
−4)

Year 5
Before feature selection 0.646 ( ±1e

−4) 0.633 ( ±1e
−4) 0.629 ( ±1e

−4)

After feature selection 0.645 ( ±1e
−4) 0.636 ( ±1e

−4) 0.626 ( ±1e
−4)

Year 10
Before feature selection 0.678 ( ±1e

−4) 0.661 ( ±1e
−4) 0.681 ( ±1e

−4)

After feature selection 0.676 ( ±1e
−4) 0.666 ( ±1e

−4) 0.684 ( ±1e
−4)

Table 3.  AUROC with respect to patient death prediction on test data. Best scores are highlighted in bold.

Random forest Cox PH model Neural network

Year 1
Before feature selection 0.731 ( ±2e

−4) 0.752 ( ±3e
−4) 0.758 ( ±2e

−4)

After feature selection 0.734 ( ±2e
−4) 0.749 ( ±3e

−4) 0.750 ( ±2e
−4)

Year 5
Before feature selection 0.791 ( ±1e

−4) 0.804 ( ±1e
−4) 0.802 ( ±1e

−4)

After feature selection 0.795 ( ±1e
−4) 0.805 ( ±1e

−4) 0.797 ( ±1e
−4)

Year 10
Before feature selection 0.834 ( ±1e

−4) 0.845 ( ±1e
−4) 0.841 ( ±1e

−4)

After feature selection 0.836 ( ±1e
−4) 0.844 ( ±1e

−4) 0.837 ( ±1e
−4)

https://github.com/AchilleSalaun/Xamelot
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neural network shows similar performances to the performances of the random forest and the Cox PH model, 
slightly outperforming them on the graft failure prediction task.

From an interpretability viewpoint, the neural network, when combined with SHAP, provides a richer clinical 
depiction of the data than Cox. The features that are important to clinicians are also considered important to the 
neural network. For example, among predominant features for graft failure prediction (cf. Fig. 2b), recipient and 
donor age, donor type, donor past hypertension, or eGFRs are also features commonly used by regression models 
from the transplant  literature4,21,22. The direction of effect of feature values on predictions also matches clinical 
knowledge. For instance, patients with diabetes are likely to have inferior survival. This is reflected through the 
higher SHAP values regarding graft failure when prd#Diabetes is equal to one. The effect of covariates on 
survivability can be non-linear, as illustrated by the recipient age (rage; see Fig. 2c). Indeed, it is commonly 
recognised that younger patients can be less adherent to medication, hence increasing the risk of graft failure. 
This phenomenon vanishes with older patients, and age then becomes a penalising feature for survivability. In 
contrast, explanations obtained from the Cox PH model do not highlight such behaviours (see Fig. 2d), being 
limited to less expressive covariate effects. By design, it can be summarised as a linear function in the case of Cox. 
Moreover, Cox coefficients do not seem to reflect clinical expertise in terms of feature importance. For example, 
it attaches a strong importance to the hospital centre while both neural networks and random forests agree on 
the predominance of donor age. Finally, survival random forests share similar interpretations to DeepHit (see 
Fig. 2a).

Discussion
Neural networks have shown comparable performance to tools generally used by clinicians when predicting 
kidney transplant outcomes. In particular, they perform well when predicting long-term outcomes, which is a 
useful property when making a decision as to whether to accept an organ offer.

The Cox PH model remains a robust solution in terms of performance, with little to no hyperparameter 
tuning. It is simple to use, leads to reliable predictions, and is easy to understand by clinicians. However, whilst 
Cox PH models can be interpreted at a model level by inspecting regression coefficients, interpretability at 
an individual prediction level is not as easy. First, feature effects are linked indirectly to the survival function 
through the linear component in the hazard function. Since Cox PH model’s inherent interpretability comes 
from this linear component, variants aiming at modelling non-linear covariates (e.g. by use of splines) might 
hamper interpretability. Furthermore, using splines would require an a priori understanding of the covariate 
effects. Finally, interpretations do not depend on the prediction time due to the proportional hazard assumption. 

Figure 2.  Interpreting graft failure prediction at 10 years. (a) and (b) provide covariate effects with regards 
to SHAP for random forests and neural networks, respectively. Each point represents a Shapley value for a 
particular feature in a particular offer. The values of the features are represented through colour: blue and 
pink indicate features whose values are low and high, respectively. When focusing on a single feature, this 
information can be directly reported onto the y-axis (cf. b).
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Whilst it is possible to use SHAP with a Cox PH model, in the same way as the neural networks presented here, 
most published models use coefficients for interpretation.

In contrast, and despite their black-box nature, neural networks stand out in terms of interpretability. Using 
SHAP allows us to have fine-grain, real-time interpretations for individual predictions, which is not possible 
by investigating the Cox PH model’s regression coefficients. This level of interpretability allows us to clinically 
validate these models, making them more trustworthy and explainable to patients. SHAP can also highlight 
interesting relationships between covariates and transplant outcomes. Previous analyses of the UK registry data 
show that outcomes from kidney donations before and after circulatory death are equivalent regarding both 
patient and graft  survival23,24. Our models, trained from a larger dataset, suggest that donor type can have an 
impact on long-term transplant outcomes (see Fig. 2b, dtype). This level of interpretability is useful to explain 
individual prediction through the lens of SHAP. For example, Fig. 4 shows the contribution of each feature to a 
given prediction of graft survival at year 10. In this case, predicted survivability is mainly lowered by the calcu-
lated reaction frequency at transplant and the donor type. Survival forests exhibit comparable performance and 
interpretation to neural networks. Nevertheless, the process of training and using random forests is considerably 
slower compared to training and using neural networks or the Cox PH model. Consequently, neural networks 
emerge as more preferable candidates when compared to survival forests.

As shown in Fig. 3, calibration remains a crucial step in the process: as prediction scores are meant to sup-
port clinicians’ decisions, it is important to ensure that these scores offer an intuitive representation of the risks 
associated with graft failure and patient death. It is worth noting that calibration does not alter raw performances, 
provided the calibration function is strictly increasing. Indeed, concordance assesses how well data points are 
sorted, while AUROC evaluates how effectively they are classified. In this survival analysis context, considering 

Figure 3.  Calibration of the neural network predicting graft failure. Each point represents a cohort of transplant 
offers that share similar predicted scores: the average score respective to each group is reported on the x-axis and 
the true class ratio within each groups is reported on the y-axis. Predictions at 1, 5, and 10 years are considered 
all together while training the calibration model.

Figure 4.  Waterfall plot for an example prediction of graft failure at 10 years. Positive SHAP values indicate 
a positive impact on graft failure, and vice versa. The plot demonstrates the impact of individual features in 
moving the predicted survival away from the population average (0.499) to an individualised prediction (0.669).
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predictions at years 1, 5, and 10 all together while performing calibration prevents introduction of inconsistencies 
in predictions (e.g predicting a higher probability of graft failure at year 5 than at year 10).

Predicting transplant outcomes is only one aspect of the construction of a CDS tool for kidney offering. 
However, predicting what could be the consequences of refusing an organ offer in terms of future transplant 
opportunities, death, or removal from the waiting list is another key step. Having a good understanding of the 
outcomes in both scenarios is indeed necessary to predict individualised treatment effects. In parallel, measures 
to safe-guard the use of the CDS tool are necessary. If interpretability contributes to building trust regarding the 
tool’s predictions, uncertainty quantification is another critical feature regarding the construction of a CDS tool 
for organ offering. This can be achieved either through post hoc error prediction using meta-modeling, or with a 
Bayesian version of our neural network models (or frailty models as an extension of Cox models). The presence of 
biases derived from the data is also something to inspect more carefully. As our models have been compared on a 
fair ground, possible biases should not impact our conclusions. Preliminary tests show optimistic results regard-
ing the limitation of biases related to sensitive characteristics like age, gender, or ethnicity. One can also note that 
we do not use SHAP to explore inter-covariate dependencies: if it could be relevant in the context of the clinical 
model validation, such interactions start to be difficult to explain and present to clinicians in practice. Finally, 
we have yet to address the aspect of maintainability for our tool. This will require recurring validation on recent 
data as it becomes available, with retraining of the models if performance decreases. The concordance would be 
a good candidate for performance monitoring. Indeed, it provides a synthetic viewpoint on a survival analysis 
model’s performance, handling censored events. Moreover, this metric takes an important place in the design 
of the loss function for training DeepHit. The optimum solution for model maintenance would be continuous 
learning, but this may be challenging in the context of healthcare data due to limitations in access to datasets.

To conclude, we have trained several models to predict transplant outcomes from kidney offers, based on 20 
years of registry data. Neural networks provide comparable results to classic survival analysis models. By using 
SHAP, we provide clinically validated interpretations of these models. This level of interpretability is especially 
relevant to enable validation from clinicians and to involve patients in the decision-making process. Therefore, 
neural networks represent a promising core component in the construction of future CDS system for transplant 
offering. As future work, we want to extend our analysis to the prediction of patient outcomes in the case of a 
declined offer. We also plan to add uncertainty quantification to our CDS tool.

Data availability
The dataset analysed during the current study is not publicly available due to the property of NHSBT but is 
available from the corresponding author on reasonable request.
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