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ABSTRACT

The decision to accept an organ offer for transplant, or wait for something potentially better in the future, can be challenging.
Especially, clinical decision support tools predicting transplant outcomes are lacking. This project uses interpretable methods
to predict both graft failure and patient death using data from previously accepted kidney transplant offers. Precisely, using
more than twenty years of transplant outcome data, we train and compare several survival analysis and classification models
in both single and multiple risk settings. In addition, we use post hoc interpretability techniques to clinically validate these
models. In a single risk setting, neural networks provide comparable results to the Cox proportional hazard model, with 0.71
and 0.81 AUROC for predicting graft failure and patient death at year 10, respectively. Recipient and donor ages, primary renal
disease, donor eGFR, donor type, and the number of mismatches at DR locus appear to be important features for transplant
outcome prediction. We also extended the neural network approach to multiple outcome prediction, maintaining consistent
performances and clinical interpretation. Thus, owing to their good predictive performance and the clinical relevance of their
post hoc interpretation, neural networks represent a promising core component in the construction of future decision support
systems for transplant offering.

Introduction1

Around 2,500 deceased donor kidney transplants are performed in the UK each year. At any time, there are around 5,0002

patients on the kidney transplant waiting list with an average wait of 2-3 years. The shortage of organs available for transplant3

means that some patients become unfit for surgery or die whilst waiting. Because of this, clinicians often consider organ offers4

from less-than-optimal donors with existing comorbidities or older age. Decisions around organ offers are made by clinicians5

based upon the information available at the time of offer, including donor and recipient demographic and medical details.6

Clinicians use their clinical experience, but do not have reliable tools available to help them predict what would happen if they7

choose to accept or decline an offer and wait for the next available one. This uncertainty leads to considerable variability in8

organ decline rates and waiting times between clinicians and centres. A computerised decision support (CDS) system that9

accurately predicts transplant outcomes, both in terms of graft failure and patient death, as well as indicating what would10

happen if the organ offer was declined (in terms of future offers and likely waiting time), may help to support clinicians in11

making these difficult decisions. As decisions must remain under the responsibility and control of the clinician, any CDS tool12

must be easy to use, and predictions must be interpretable from a clinician’s perspective. Interpretability and usability are also13

important to patients, allowing better explanations of likely outcomes during the informed consent process.14

The aim of this study is to predict transplant outcomes in the scenario of an accepted kidney offer. We rely on more15

than twenty years of registry data, containing over 36,000 accepted kidney transplant offers, with graft and patient survival16

information. These data have been provided by National Health Service Blood and Transplant (NHSBT) with ethical approval.17

Using these data, we have trained and compared several survival analysis and machine learning classification models, in both18

single and multiple-risk settings. In addition, we use post hoc interpretability techniques to clinically validate these models.19

Predicting the time of occurrence of an event (such as patient death or graft failure) from censored data has been extensively20
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studied under the name of survival analysis. This has many applications in health informatics such as predicting strokes [1],21

oral cancer [2], or graft outcome prediction. Censored data are common in such contexts, resulting from loss of follow-up,22

competing events, or the end of the study. In the context of graft outcome prediction, [3–5] use the Cox proportional hazard23

(PH) model to predict kidney graft or recipient survival. The Cox PH model is a classic time-to-event approach that models24

the hazard function, as in the failure rate of a system according to time [6]. This approach is not only robust and reliable, but25

also simple to use and well understood by clinicians. Several generalisations of this model have been proposed. For instance,26

DeepSurv [7] aims at increasing the modelling power of the Cox model by replacing the linear contribution of the covariates27

with a neural network. Since the Cox model was originally designed to handle a single type of event, generalisations to multiple28

risks (e.g. predicting both graft and patient survival) have also been proposed. However, the effects of the regression coefficients29

on cause-specific survivability are not interpretable [8].30

In general, one can distinguish two approaches for survival analysis: either providing a description of survivability over31

time, or predicting the state of the subject (e.g., graft, recipient) at arbitrary time points. While the Cox PH model follows the32

first approach, machine learning models can be used after converting the survival analysis problem into a classification problem33

at a given point in time. In the case of predicting transplant outcomes, predictions at specific milestones (e.g., graft and patient34

survival at years 1, 5, or 10) are generally sufficient: for example, existing risk communication tools such as [9] identify survival35

functions obtained from the Cox PH model at these time points. Many previous publications directly address this approach. For36

instance, [10] predicts kidney graft survival using tree-based models, [11] investigates several techniques, including random37

forests and neural networks. In [3], the neural network’s ability to predict both graft and patient survival in kidney transplant38

is compared to one of the regression techniques (such as Cox). Predictions at different time points were either modelled39

independently or through multiple-output neural networks. [12] compares multilayer perceptrons and Bayesian networks, [13]40

uses Bayesian belief networks. Whilst many of these previous studies demonstrate acceptable predictive performance, none41

challenged their models’ validity through the lens of clinical interpretability.42

Interpretability is another important criterion in the construction of a CDS tool for predicting graft outcomes. Informally,43

interpretability is the extent to which the prediction of a model can be understood by a human [14]. This way, users can44

build trust regarding the model’s results and remain in control of the associated outcomes. Moreover, a good model should45

always be intrinsically interpretable to a certain degree. Indeed, interpretable models have been shown to be more robust to46

adversarial attacks [15]. Unfortunately, this is not the case with the approaches mentioned above. Although the Cox PH model47

is interpretable in the single risk case, its generalisation to competing risks is not [8]. It is possible to interpret a posteriori a48

black box model with the help of post hoc interpretability methods. One can provide a local explanation of a given prediction.49

For instance, LIME [16] locally samples data points around the input and returns a linear explanation of the predictions made by50

the black-box model from these data points. Unfortunately, this solution is unstable; explanations depend highly on the sampled51

data points, harming the trustworthiness of the explanations. Similarly to LIME, SHAP [17] is a post hoc interpretability method52

relying on additive feature attribution models, i.e. linear functions as local explanation models. It provides explanations via53

game theory: each prediction is seen as a game where the features are players contributing to that game. Feature contributions54

are computed by considering all possible coalitions of features and the marginal contribution of each feature within these55

coalitions. Hence, SHAP can be considered as a gold standard in terms of post hoc interpretability methods.56

Results57

Single Outcome Prediction58

During the feature selection stage, we identified inconsistencies between SHAP interpretations of the obtained models and59

clinical expectations. For example, survivability is expected to decrease with the number of times a patient has been transplanted,60

which is not what we observed in the models produced. After further investigations, it appears that this feature is biased with all61

non primo recipients having a successful graft. The data set has indeed been built from various heterogeneous sources, with62

some outcomes not available for subsets of the data. From now on, we discard this feature. Finally, 15 and 10 features are63
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Figure 1. Interpreting single outcome prediction models. Both models have been trained to predict graft failure at 10 years.
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Random forest Cox PH model Neural network
AUROC F1-Score AUROC F1-Score AUROC F1-Score

Year 1 Without feature selection .62 (±2e−4) .14 (±2e−6) .61 (±1e−2) .15 (±1e−5) .62 (±2e−4) .17 (±9e−5)
With feature selection .61 (±3e−4) .14 (±4e−6) .61 (±3e−4) .15 (±1e−5) .62 (±3e−4) .18 (±7e−5)

Year 5 Without feature selection .62 (±2e−4) .34 (±7e−7) .64 (±2e−4) .37 (±5e−5) .64 (±2e−4) .37 (±2e−4)
With feature selection .60 (±1e−4) .35 (±8e−6) .63 (±1e−4) .36 (±1e−4) .63 (±1e−4) .36 (±1e−4)

Year 10 Without feature selection .68 (±2e−4) .64 (±6e−5) .71 (±1e−4) .65 (±7e−5) .71 (±1e−4) .61 (±2e−4)
With feature selection .68 (±1e−4) .62 (±5e−5) .70 (±1e−4) .63 (±4e−5) .71 (±9e−5) .61 (±1e−4)

Table 1. Performance of models for graft survival prediction. Graft failure ratios for years 1, 5, and 10 are 7%, 20%, 44%,
respectively. Best scores are highlighted in bold.

Random forest Cox PH model Neural network
AUROC F1-Score AUROC F1-Score AUROC F1-Score

Year 1 Without feature selection .73 (±4e−4) .15 (±1e−4) .75 (±3e−4) .15 (±1e−4) .71 (±4e−4) .12 (±6e−5)
With feature selection .74 (±3e−4) .15 (±3e−4) .73 (±3e−4) .14 (±8e−5) .74 (±3e−4) .12 (±4e−5)

Year 5 Without feature selection .78 (±1e−4) .42 (±1e−4) .79 (±1e−4) .43 (±1e−4) .79 (±1e−4) .41 (±2e−4)
With feature selection .76 (±1e−4) .39 (±1e−4) .77 (±1e−4) .41 (±1e−4) .76 (±1e−4) .39 (±1e−4)

Year 10 Without feature selection .80 (±1e−4) .67 (±1e−4) .82 (±9e−5) .69 (±1e−4) .82 (±9e−5) .68 (±1e−4)
With feature selection .80 (±9e−5) .66 (±1e−4) .81 (±7e−5) .66 (±1e−4) .81 (±7e−5) .66 (±1e−4)

Table 2. Performance of models for patient survival prediction. Patient death ratios for years 1, 5, and 10 are 3%, 14%, and
37%, respectively. Best scores are highlighted in bold.

Alive with functioning graft Alive with failed graft Dead
AUROC F1-Score AUROC F1-Score AUROC F1-Score

Year 1 Without feature selection .59 (±2e−4) .93 (±8e−7) .64 (±1e−3) .09 (±2e−4) .65 (±8e−4) .10 (±1e−4)
With feature selection .59 (±1e−4) .83 (±2e−5) .59 (±3e−4) .06 (±2e−4) .69 (±6e−5) .12 (±3e−5)

Year 5 Without feature selection .64 (±6e−5) .81 (±3e−5) .58 (±3e−4) .11 (±4e−4) .74 (±4e−5) .36 (±8e−5)
With feature selection .62 (±4e−5) .74 (±2e−5) .63 (±3e−4) .09 (±3e−4) .73 (±1e−4) .38 (±2e−4)

Year 10 Without feature selection .71 (±8e−5) .70 (±8e−5) .72 (±9e−4) .18 (±1e−4) .79 (±2e−5) .63 (±6e−5)
With feature selection .71 (±6e−5) .65 (±3e−5) .71 (±5e−4) .23 (±3e−4) .79 (±3e−5) .65 (±9e−5)

Table 3. Performance of multi outcome prediction models. Outcome ratios (alive with a functioning graft, alive with failed
graft, and dead) for years 1, 5, and 10 are (.94, .03, .03), (.81, .15, .05), and (.56, .37, .07), respectively.

selected to predict graft failure and patient death, respectively. Notably, recipient and donor ages, primary renal disease, donor64

eGFR, donor type, and the number of mismatches at DR locus are important features to predict both outcomes.65

Tables 1 and 2 provide both the AUROC and the F1-Score of each model on predicting graft failure and patient death,66

respectively, for observations years 1, 5, and 10. Performance before and after feature selection are presented. One can67

observe that overall performances increase with the observation time, being maximal at year 10. More specifically, the neural68

network has similar performances as the random forest and the Cox PH model, slightly outperforming them on the graft failure69

prediction task.70

From an interpretability viewpoint, the neural network, when combined with SHAP, provides a richer clinical depiction71

of the data than Cox or the random forest. The features that are important to clinicians are also considered important to the72

neural network. For example, among predominant features for graft failure prediction (cf. Figure 1.a), recipient and donor age,73

donor type, donor past hypertension, or eGFRs are also features commonly used by regression models from the transplant74

literature [4, 18, 19]. The effect of feature values on predictions also matches clinical knowledge. For instance, patients with75

diabetes are likely to have inferior survival. This is reflected through the lower SHAP values regarding graft survival when76

prd#Diabetes is equal to one. The effect of covariates on survivability can be non-linear, as illustrated by the recipient age77

(rage; see Figure 1.b). Indeed, it is commonly recognised that younger patients can be less adherent to medication, hence78

increasing the risk of transplant failure. This phenomenon vanishes with older patients, and age then becomes a penalising79
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Figure 2. SHAP values for multiple outcome predictions at year 10.

feature for survivability. In contrast, explanations obtained from the Cox PH model or the random forest do not highlight such80

behaviours (see Figures 1.d and 1.c), being limited to less expressive covariate effects. By design, it can be summarised as a81

linear function in the case of Cox, and the random forest sometimes fails to represent relevant dependencies between survival82

and numerical values (e.g. the recipient’s age in Figure 1.c).83

Multiple Outcome Prediction84

In the multiple outcome case, 15 features are selected. Similarly to single outcome prediction, recipient and donor age, primary85

renal disease, eGFR, donor type, and number of mismatches at DR locus are present in this selection.86

Table 3 stores the cause-specific AUROC and F1-Scores obtained by our neural network. Regarding AUROC, these results87

match the ones obtained in the single risk case. Notably, overall performances improve with t⋆. However, one can notice88

that the multiple outcome prediction problem is more subject to class imbalance. For instance, patients that are alive with a89

failed graft represent 3% of the total uncensored population at year 1, 5% at year 5, and 7% at year 10. Thus, according to90

F1-Scores, the model performs better in predicting the classes alive with functioning graft and dead. This is consistent with the91

results observed in the single risk case as better prediction was obtained regarding patient death over graft failure. From the92

interpretability viewpoint, we retrieve clinically coherent SHAP values (cf. Figure 2). Notably, we obtain interpretations that93

are consistent with the ones obtained in a single risk setting. Similarly, our neural network can reflect non-linear covariate94

effects.95

Discussion96

Neural networks have shown comparable performances to tools generally used by clinicians when predicting kidney transplant97

outcomes. In particular, they perform well when predicting long-term outcomes, which is a necessary property when considering98

the acceptance of an organ offer. The Cox PH model remains a robust solution in terms of performance, with little to no99

hyperparameter tuning. It is simple to use, leads to reliable predictions, and is easy to understand by clinicians. However,100

despite their black-box nature, neural networks stand out in terms of interpretability. Indeed, using SHAP allows us to have101

fine-grain interpretations of these models, which is not possible with the Cox PH model or random forests. This level of102

interpretability allows us to clinically validate these models, making them more trustworthy and explainable to patients. SHAP103
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Figure 3. Explanation of a given prediction of graft survival at 10 years. The calculated reaction frequency at transplant is
equal to 84%; donation occurred after circulatory death; the donor was 56 years old and non-smoker; eGFR remained equal to
113; no mismatches at the DR locus has been recorded; finally, the recipient is Asian with diabetes. Negative SHAP values
indicate a negative impact on survivability, and vice versa.

can also highlight interesting relationships between covariates and transplant outcomes. Previous analyses of the UK registry104

data show that outcomes from kidney donations before and after circulatory death are equivalent regarding both patient and105

graft survival [20, 21]. Nonetheless, our models, trained from a larger dataset, suggest that donor type can have an impact on106

long-term transplant outcomes (see Figure 1.d, dtype). In practice, this level of interpretability is useful to explain individual107

prediction through the lens of SHAP. For example, Figure 3 shows the contribution of each features to a given prediction of108

graft survival at year 10. In this case, predicted survivability is mainly lowered by the calculated reaction frequency at transplant109

and the donor type. Neural networks can also deal with multiple outcomes, providing a more comprehensive prediction of the110

future state of the recipient, where patient death and graft failure are modelled jointly. There may be some clinical relevance to111

distinguishing the state of graft function at the time of death (i.e. death with or without graft failure). Unfortunately, the data set112

is too unbalanced and the population dead with graft failure is not large enough to provide such a distinction. These outcomes113

are not competing: a patient being alive with a failed graft at some point could die later, which remains an event of interest.114

To conclude, we have trained several models to predict transplant outcomes from kidney offers, based on twenty years of115

registry data.Neural networks provide comparable results to classic survival analysis models, and can be easily extended to116

multiple outcome prediction. By using SHAP, we provide clinically validated interpretations of these models. This level of117

interpretability is especially relevant to enable validation from clinicians and to involve patients in the decision-making process.118

Therefore, neural networks represent a promising core component in the construction of future CDS for transplant offering.119

However, predicting transplant outcomes is only one aspect of the construction of a CDSS for kidney offering. Predicting what120

could be the consequences of refusing an organ offer in terms of future transplant opportunities, death, or removal from the121

waiting list is another key step. Having a good understanding of the outcomes in both scenarios is indeed necessary to predict122

individualised treatment effects. Uncertainty quantification is another critical research direction regarding the construction of a123

CDS tool for organ offering. Indeed, it can improve the trustworthiness of the tool by giving more insights about how difficult a124

given prediction is, and why. This can be achieved through post hoc error prediction using meta-modeling.125
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Methods126

Data127

Our work is based on the analysis of a data set from the UK Transplant Registry, provided with ethical approval by NHSBT. It128

describes 36,653 accepted kidney transplants, which have been performed between the years 2000 and 2020, across 24 UK129

transplant centres. The total follow-up duration is around 22 years. Each transplant is originally described with 3 identifiers, 12130

immunosuppression follow-up indicators, 143 donor, recipient and transplant characteristics, and 7 entries describing targeted131

outcomes. Considering transplants as independent, we exclude the transplant, donor, and recipient identifiers. Additionally,132

information regarding post-transplant immunosuppression is discarded as this is not available at the time of the offer decision.133

The donor, recipient and transplant characteristics serve as input features for modelling. Among them, 24 describe the134

recipient, 109 represent the donor, and 10 refer to the overall transplant. Both recipient and donor characteristics contain135

generic information such as gender, ethnicity, age, blood group, height, weight, or body mass index (BMI). More specific136

information is also available, such as the transplant centre, number of previous transplants, waiting time, ease of matching,137

and the dialysis status. Donor data include the cause of death, past medical history and results of blood tests including kidney138

function (estimated glomerular filtration rate, eGFR). Transplant data include the donor-recipient immunological match.139

Duplicate rows are removed, and we ensure that numerical values are within a plausible clinical range. Categorical values140

are checked by clinicians and simplified (or removed) if needed. BMI is recomputed based on weight and height. Both weights141

and heights are discarded to limit redundant information. Blood measurements are harmonised across the data set by selecting142

for each transplant the first measurement ever taken (generally at registration) and the maximum value ever recorded. Since the143

calculation of eGFR varies across hospitals, this metric is recomputed over the whole data set using a consistent definition144

(see appendix). Recipient dialysis status is also simplified into a dialysis duration and dialysis modality at time of transplant145

(predialysis, haemodialysis or peritoneal dialysis). Transplant offers not meeting the inclusion criteria, such as those leading to146

the transplantation of multiple organs, are discarded.147

Outcomes present in the dataset include information about graft failure, patient death, and transplant failure. Transplant148

failure denotes either the graft failure or death. Each outcome is represented as a pair containing an event time and a right-149

censoring indicator. Right-censoring is a common type of censoring in survival analysis that describes the loss of follow-up on150

the event of interest. It can occur for various reasons, such as the end of the study, competing events, etc. Thus, right-censored151

information provides some partial information about the survival time, where it is only known to be greater than the censoring152

time. Minor missing censored indicators related to patient death are thus imputed based on graft information, and transplant153

outcomes are recomputed for the sake of consistency.154

After removing the features presenting more than 5% missing values across the whole data set, and excluding any offer155

containing missing information, the resulting data set contains 25,370 transplants described through 45 input variables. A156

summary of the data-cleaning process is given in Figure 4. Additionally, an exhaustive list of the features and targets considered157

at the latest stage of this process is given in appendix.158

Methodology159

In this article, we first compare the Cox PH model to classification methods in a single risk setting. Subsequently, multiple160

outcome predictions are conducted by employing neural networks. The different models are interpreted a posteriori, and their161

performances are discussed. In both cases, the following methodology is applied. First, numerical values are standardised and162

categorical ones are one-hot-encoded. Standardisation appears to be more relevant than normalisation due to the presence of163

outliers in the data. Training is then performed through 5-cross validation on 80% of the data. Finally, the relevant performance164

metrics are computed and averaged from 100 bootstraps of the remaining 20%. The split into training and test data is done165

randomly, in a stratified manner with regards to censoring indicators. Due to matching policy changes and follow-up time166

differences between training and testing cohorts, we cannot split the data according to transplant dates. Classifiers are clinically167

interpreted using SHAP. When relevant, the coefficients of intrinsically interpretable models are also investigated (Code used168

7/11



Figure 4. Data pre-processing steps.

for experiments can be found at https://github.com/AchilleSalaun/Xamelot).169

Single Outcome Prediction170

For a single type of event interest (e.g. graft failure), we want to predict the occurrence of that event before an arbitrary time171

point t⋆. The Cox PH model and classifiers consider different kinds of input data, tackling different formulations of that problem.172

Cox returns a survival function, describing the probability of survival (as in the absence of an event) with regard to time.173

Therefore, the probability of an event at time t⋆ can be obtained by evaluating the survival function at that time. Conversely, the174

censored data must be converted into labels to be fed into classifiers. Let us denote the pair (event time, censoring indicator)175

by (t,c). Then, the graft is functioning (or the patient is alive) if t⋆ < t; the graft failed (the patient is dead) if t⋆ ≥ t and the176

event has not been censored (c = 1); finally, the status of the graft (or patient) is unknown if t⋆ ≥ t and the event has been177

censored (c = 0) (see Figure 5). Dropping unknown labels induces a binary classification problem since the graft is now either178

functioning or failed, or the patient is either alive or dead. This last operation generally assumes censoring and events to be179

independent, which often leads to biases in practice. However, the Cox PH model relies on the same assumption: likelihood’s180

maximisation is achieved by managing a risk set over time, that is a set of subjects that are still under follow-up [6]. Hence,181

censored events with lost follow-up are implicitly dropped while training Cox PH models. The shorter the observation time182

t⋆, the more imbalanced the outcome distribution is, with failure or death being under-represented regarding survival. For183

instance, the class imbalance goes from 7% of graft failures at 1 year, to 44% at 10 years. As we drop censored events with a184

censoring time that is lower than the observation time, the number of data points used for training also varies with regard to185

time. Thus, the training data sets used for predicting transplant outcomes at years 1 and 10 comprise 23,422 and 10,017 data186

points, respectively.187

We can now compare the respective abilities of the Cox PH model, random forests, and neural networks to predict transplant188

outcomes using the area under the receiver operating characteristic (AUROC). The choice of AUROC is motivated by two189

aspects. First, it is conceptually close to concordance which is the metric generally used for survival analysis. Second, it is a190
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Figure 5. Translation of a single risk survival analysis problem into a classification task. Event times are given by the x-axis;
× indicates the observation of an event, ◦ indicate censoring. For any time t⋆, graft (or patient) status can be derived from
survival data.

good metric when dealing with balanced data, which is the case when predicting transplant outcomes after 10 years. Therefore,191

this metric is relevant since we have a particular interest in predicting long-term outcomes. However, as class imbalance192

remains a recurrent difficulty, we also compute the F1-Score. For a given model, we select the classification threshold that193

leads to the best possible F1-Score. From an instantiation viewpoint, Breslow’s estimator is used to derive the Cox PH model’s194

baseline [22]. In addition, a regularisation parameter is introduced and set to 1e−4 to deal with colinearities in the data. The195

random forest [23] contains 1,000 trees, relies on Gini’s criteria, and adjusts class weights automatically. To predict graft196

survival (or patient death) at years 1, 5, and 10, a neural network is instantiated with one hidden layer of 400 (200, respectively)197

neurons, activated by a ReLU, and with 10% dropout. The loss is a weighted cross to handle class imbalance. Finally, the198

training is done through 20 epochs, with batches of size 8 (32, respectively), using RMSProp and a learning rate equal to 1e−4.199

Feature selection is performed after preliminary training. We first inspect the effect of each feature on prediction to detect200

potential inconsistencies in the data. Then, we temporarily add random noise: features that are shown to be less important in the201

prediction than noise are discarded. Finally, we progressively remove the less relevant features from the set of selected features202

until a noticeable decrease in performance is observed. For a given type of outcome, the set of selected features corresponding203

to year 10 includes important features for prediction in earlier years; therefore we use the same set of features for years 1 and 5.204

Multiple Outcome Prediction205

For further analysis, we generalise our approach to multiple outcomes prediction. For an arbitrary time point t⋆, we want to206

know whether the patient is alive with a functioning graft, alive with a failed graft, or dead. The construction of these labels207

from censored data is similar to the one performed in the single risk case. Transplants with unknown status due to censoring are208

discarded. To address this new problem, we focus on neural networks as they appeared to be a promising approach in the single209

risk case (see Results and Discussion). We train a neural network with one hidden layer of 1000 neurons activated by ReLU. A210

dropout is set to 10%. The loss is a weighted cross entropy and the training is done through 100 epochs, with batches of size 64.211

Optimisation relies on RMSProp with a learning rate set to 1e−3. Similar to the single risk case, feature selection is conducted212

after initial training using all features.213

Data availability statement214

The dataset supporting this study is the property of NHSBT (National Health Service Blood and Transplant). Due to the215

presence of patient data that could potentially lead to identification, obtaining prior ethical approval from NHSBT is mandatory.216

Consequently, the supporting data is not accessible for external use.217
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Legends266

Figure 1 Interpreting single outcome prediction models. Both models have been trained to predict graft failure at 10 years.267

Table 1 Performance of models for graft survival prediction. Graft failure ratios for years 1, 5, and 10 are 7%, 20%, 44%,268

respectively. Best scores are highlighted in bold.269

Table 2 Performance of models for patient survival prediction. Patient death ratios for years 1, 5, and 10 are 3%, 14%, and270

37%, respectively. Best scores are highlighted in bold.271

Table 3 Performance of multi outcome prediction models. Outcome ratios (alive with a functioning graft, alive with failed272

graft, and dead) for years 1, 5, and 10 are (.94, .03, .03), (.81, .15, .05), and (.56, .37, .07), respectively.273

Figure 2 SHAP values for multiple outcome predictions at year 10.274

Figure 3 Explanation of a given prediction of graft survival at 10 years. The calculated reaction frequency at transplant is275

equal to 84%; donation occurred after circulatory death; the donor was 56 years old and non-smoker; eGFR remained276

equal to 113; no mismatches at the DR locus has been recorded; finally, the recipient is Asian with diabetes. Negative277

SHAP values indicate a negative impact on survivability, and vice versa.278

Figure 4 Data pre-processing steps.279

Figure 5 Translation of a single risk survival analysis problem into a classification task. Event times are given by the x-axis; ×280

indicates the observation of an event, ◦ indicate censoring. For any time t⋆, graft (or patient) status can be derived from281

survival data.282
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